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Abstract larly, in making a blue noise screen, the filter is used to
find locations to add black or white pixels. However, all

The Blue Noise Mask (BNM) is a stochastic screen thathe reported work has been done on a qualitative basis.
produces visually pleasing blue noise. In its constructionin the following section, we will derive the mathemati-
a filter is applied to a given dot pattern to identify clumpscal expressions for the filtering approach based on a
in order to add or remove dots and thereby generate a cdruman visual model and we will explain what is hap-
related binary pattern for the next level. But up to now, alpening to the perceived error of the halftone pattern dur-
the filters were selected on a qualitative basis. There is nag the filtering and swapping process.
reported work describing precisely how the filtering and
selection of dots affects the perceived error of the binary Analysis of Filtering Process
pattern. In this paper, we will give a strict mathematical
analysis of the BNM construction based on a human viThe Human Visual Model
sual model, which provides insights to the filtering pro- Our analysis of the filtering approach is based on a
cess and also prescribes the locations of the dots that wiluman visual model, which is basically a low-pass fil-
resultin a binary pattern of minimum perceived error wherter. The following is a model given by Déaly
swapped. The analysis also resolves some unexplained
issues noticed by other researchers. . 2 g\
_ Eia(mcf”)exp(—(cf”) ) ifF O,
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Stochastic screening has been an active research field in .

recent years. Blue noise halftone screens were first devekhere a = 2.2, b = 0.1 92, ¢ = 0.114 and d = 1f;jjlis

oped by Mitsa and Parkeén 1991. The BNM combines the radial spatial frequency in cycles/degree gpdi$

the blue noise characteristic of error diffusiand the the frequency at which the function peaks. To incorpo-

fast speed of ordered dither. The original BNM was conrate the decrease in sensitivity at angles other than hori-

structed for one grey level at a time beginning with arzontal and vertical, the radial frequency is scaled such

intermediate starting binary pattern, or seed. Each substhat

guent level was constrained by the binary pattern at a pre- .

ceding level, such that a single valued function, or ordered fij - fij/ s@),

dither array was constructed with desired first order and

second order statistics. At each level, a circularly symWhere

metric filter was used to identify and eliminate low fre- _

guency structures (large “clumps”) incompatible with the 5(0) = Dl—wgcosme) + [+ w(] 2)

desired blue noise power spectrum. Implicit periodicity, 02 0o O

or “wraparound” filtering was used so the BNM could be

seamlessly tiled with itself to cover larger image spacesvhere w is a symmetry parameter.

Yao and Parkéiater proposed a simpler and more effi-

cient approach that further reduced the low frequencZhanging One Black Pixel to a White Pixel

contents of the halftone patterns of the BNM. Ulichney In this section, we consider the case of changing one

also used a filtering approach which he called the “voidblack pixel to a white pixel and try to minimize the per-

and cluster” method to generate a blue noise screen. ceived error between the constant grey level and the per-
Using the filtering approach to generate a blue noiseeived binary pattern.

screen is efficient and easily implementable. When us-  Given a current binary pattern b(i,j) for level g and

ing the filtering approach to generate a blue noise pata human visual model, filter h(i,j), find the locations of

tern starting from a white noise pattern, the filter isthe black pixels to be converted to white pixels that will

applied repeatedly to the pattern to locate the centers afinimize the mean squared error of the level g’ =g+

black and white clumps and then the values of the clumpnd the perceived binary pattern for level g’. For a BNM

centers are swapped, thus diminishing the clumps. Simof a size greater than £66, more than one pixels need
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to be changed to move to the next level. We will firstwhere R is the circular autocorrelation of h. In the fre-

consider the case of changing one black pixel to a whitquency domain, this filter is |H|

pixel. The perceived binary pattern for level g is: It can be easily seen that G(i) is the circular con-
volution of the binary pattern for level g with a new fil-

Sy NN . ter that is the autocorrelation function of h.
f, )= mzzo nZoh((' = M) s (1~ n)mwN)b(m,n) © Examination of equation (11) tells us that to mini-

mize G(}, j,), or the perceived error for level g’ mea-

where NkN is the size of the BNM and mod meanssured by the human visual model h, we should yse R

modulo. The modulo operation gives the filter a “wrap-the autocorrelation function of h, instead of the human

around” property which eliminates any border disconti-visual model itself, to filter the binary pattern for level

nuity when the BNM is tiled to cover larger image spaceg, and find the black pixelij,) that gives the minimum

Suppose we change a black pixel gt jj) to a white value of the filtered pattern. To look at it some other

pixel, the binary pattern for level g’ will be: way, the filter we use to search for the pixels to be
changed will result in minimum mean squared error
b' (i, J) = b(i, j) +6(i - iy j - Jo) (4) measured by another filter. If a Gaussian filter is assumed
as the human visual model, the actual filter that should
and the perceived binary pattern for level g’ is: b\/e_used has a standard deviation of
2

P00 =3 300 = M) pagre (i~ Miaan )b (M) (8) 2 ° , , ,

m=0n=0 in the frequency domain, wheeeis the standard devia-
tion of the Gaussian human visual model. Mitsa and
Parkef found empirically that using the principal fre-
SN g - - guency as the cut-off frequency in the filter design did
B0 =10 D)+ h(dmod s (o Jmoan) (6) not generate the most visually pleasing patterns. Instead,
under certain experiments they found that a factor of

From equations (3) through (5) we obtain:

The MSE for the perceived binary pattern for level g’ is:

1N- 2
E2= Nzl Nzl[f' (i) - g']2 7) should be applied to the principal frequency to obtain the
i=0 j=0 best pattern. Our theoretical analysis shows that this is not
a coincidence. For a symmetric Gaussian filter, the auto-
Our goal is to find the location(ij,) which corre-  correlation Rof h is obtained by simply replacimgwith
sponds to a black pixel and which minimize$. Ex- 2
panding the right side of the equation (7) we obtain: > O,

Neanale i o o 2 which will shift the cut-off frequency by a factor of
g2y [£0.1)+ h{( = i0)mane - = Jo)moan) =] 2
i=0 j=0 2 -

CNZIN-1 cap NSIN-L L
= igo jgo[f(hJ)‘g] +i§O 2 h*(( =10)moan’ (J = Jo)modn+) Swapping Multiple Dots
In the previous section, we solved the problem
of finding the single black or white pixel, which when

N-1N-1
+2 3 3 RN =i0) gy (= Jo)moan) swapped, yields the minimum MSE of the new bi-
h;:fN‘_‘lo nary pattern. Normally, the size of a BNM is larger
=25 39 h((i = io)moans(i = io)moan) (8 than 1616, which means multiple dots have to be
i=0 j=0 swapped to reach the next level. Intuitively, swap-

g_ing one dot each time and minimizing the MSE at

. . v S . egvery step may not give us the dots that minimize
tion. Since g’ is a constant and f(i,j) is known, the flrsttermtlhe MSE for the next level. The added dots will in-

in equation (8) is fixed. The second term is a summation - . .
the shifted filter squared over the support of the BNM. Du‘geract with each other as well as interact with the dots

p " . : of level g. The ideal way would be to simultaneousl
to the “wrap-around” property, th|_s term is constant. For therdentify %nd convert a group of pixels. Suppose thf)i/t
same argument, the fourth term is also a constant. Let '

P black pixels need to be changed to white pixels to
N-1N-1 move from level g to g'. Taking the same approach
Gligdo)= 3 3 FLNN((~ig)moan.(i-0),,,) (9  asthe last section, we have:

There are four terms on the right side of the above equ

i % P-1N-1N-1
G(ig,jg) =2 b(m,n)Ry((i, - (i —
where G(j, j,) is a function of j and j. It follows that (fo:Jo) pEOmE:Ongo (m.n) h((lp Mimodn: Up n)mOdN)
minimizing E? is reduced to minimizing Ggii,). After
implificati P-1 P-1

further smpliicaton. +5 3 Rl =i o = I Do)

o . . p=0 p'=
Glio.jo)= 3 > bMMRu((lo =Mmodn:(io =M, )(10) 0% p (11)

m=0n-0
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Let’'s examine how we can find the P black points in Conclusion

f(i,j) which, when converted to white, will minimize &’

or G(iy, jo)- To minimize the first term of G{jij,), we use In our analysis of the minimization problems, we dem-
the autocorrelation function,Rf h as a filter and apply onstrate that in order to minimize the MSE of a binary
it to the binary pattern for level g. We find the P blackpattern using a human visual model h, the autocorrelation
pixels with the smallest filtered values, which will give of h should be used as the filter to choose candidates to
the minimum value of the first term. For the second termbe swapped, although some restrictions should be im-
assuming that we are dealing with a Gaussian low pagssed on the candidates, for example, the P black pixels
filter, then R is Gaussian too. The Gaussian filter de-should not be close neighbors in the case of swapping
creases exponentially as the distance from the origin imnultiple dots. The BNM so constructed minimizes the
creases, which means that for the second term to hgerceived error of a binary pattern based on the human

minimum, the distance between the P black pixel shoulgisual model, resulting in visually pleasing patterns.

be as large as possible, which requires that the P black
pixels be distributed as uniformly as possible in théN
dimension of the binary pattern. To minimize &{j),

we should take both terms into consideration. For many1.

levels, the first term will be the dominant factor in the
perceived error, because there are many more terms in
its summation than in the second term. However, the

second term can play an important role in some cases?.

especially at extreme levels. For example, when we start

from level 0 and move to level 1, the first term is 0 and 3.

the minimization depends solely on the second term.
When two of the P black pixels we choose are too close

to each other, they can contribute considerably to the4.

second term. We should also point out that the filier R
cannot guarantee the relative positions of the P black

pixels. It is very likely that two neighboring black pix- 5.

els are picked by the filter to be swapped, which will
increase the second term immediately. Equation (12) also

provides guidance to our BNM construction algorithm. 6.

As we use our filter to pick the candidates to be swapped,
we should make sure that any two of the candidates are
not close neighbors.

U
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